

CARB-ARC: Assessment of high latitude carbon processes

J. Pulliainen, T. Vesala, T. Aalto, J. Tamminen, M. Raivonen, H. Lindqvist, J. Hakkarainen, E. Kivimäki, K. Rautiainen, J. Lemmetyinen, M. Aurela, T. Laurila, A. Mäkelä, M. Takala, M. Salminen, J. Susiluoto, T. Markkanen, T. Kalliokoski, L. Backman, I. Mammarella

ARKTIKO seminar 20-21 November 2018

The CARB-ARC approach: Integrated view on the terrestrial cryosphere's snow-soilvegetation processes using satellite and *in situ* data together with modelling

Using diverse satellite data at high latitudes allows full seasonal view on soil/vegetation processes relevant to

• carbon exchange

• annual carbon balance Microve instruments sensitive to amount and phase of water (liquidfrozen)

20.12.2018

Highlight I: Increase of carbon sink due to earlier snow melt (circumpolar boreal forest zone)

Combining satellite and ground based observations for carbon cycle research

Snow clearance as indicator for carbon exchange

- **Spring recovery** of plant photosynthesis is a major controller of the total carbon uptake in Northern latitudes
- In the northern hemisphere boreal forests, spring recovery can be linked to occurrence of snow melt-off (snow clearance) which is measured by Earth Observing satellites for almost 40 years.

Pulliainen et al., PNAS, 2017

Snow Clearance Day using microwave radiometry is a good proxy for spring recovery when calibrated with *in situ* carbon flux measurements

Earlier spring has increased carbon uptake in boreal forests (4-7% per decade)

Pulliainen et al., PNAS, October 2017

Relation between spring recovery date (SR) and carbon uptake of boreal forests in terms of GPP (thick lines) and NEP (thin lines).

- 36 years of satellite data shows that the spring recovery has occurred earlier by 2 days / decade.
- Increase in springtime cumulative GPP of carbon was 4-7% per decade

Highlight II: Increase of methane emissions from Arctic and Sub-Arctic wetlands with delayed soil freeze

Changing soil freeze patterns and CH₄ emissions from northern wetlands

Delay in the freezing of soil (wetlands) increases methane emissions

 New satellite missions (ESA SMOS and NASA SMAP) enable reliable mapping of global soil freeze/thaw

Modelled methane fluxes vs. soil freezing period

Regions of interest in **inverse modelling** and **SMOS data** analysis

Highlight III: Novel satellite missions to map greenhouse gases in the atmosphere for assessing global carbon sinks and sources

Seasonal atmospheric CO₂ concentration mapping and regional anthropogenic CO₂ emissions

Reliably observed by satellites for the first time

Eldering et al, Science 2017, Hakkarainen et al, 2016

ting Carbon Observatory -March-April 2016

> Mans of OCO-2 Xoo (bias corrected day periods in (A) March/April 2015, (B) June/July 2015, and (C) March/April 2016. Th ent area of each sounding has been exaggerated for visibility on a global scale

- Challenging to detect anthropogenic signal from CO_2 measurements due to strong seasonal variability and trend.
- 'Anomaly' method developed to detect enhanced regions.
- Indication of the origin of the emissions are obtained by cluster analysis with OMI NO₂ which indicate anthropogenic sources.

March-April 2015

June-July 2015

Conclusions

Reliable quantification of carbon cycle at the Arctic and Sub-Arctic regions requires the combination of models, *in situ* data and satellite observations

 High latitudes are problematic in obtaining in situ data, also gaps with current satellite systems

Raivonen et al. *Geoscientific Model Development* 2017 Susiluoto et al. *Geoscientific Model Development* 2018

Thank you for your attention!

N X

ATT TO

Her?