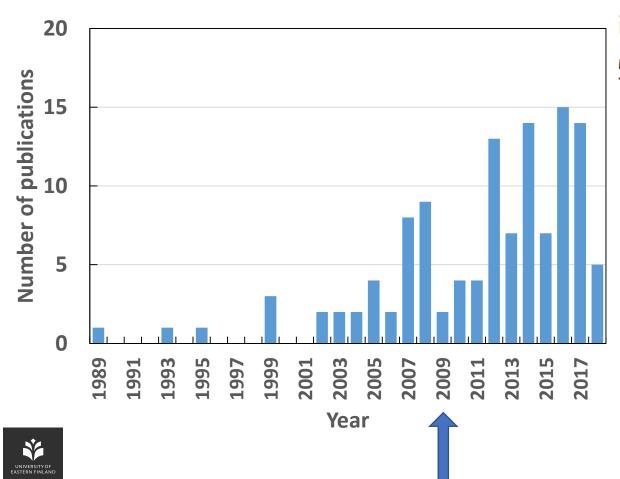


Christina Biasi, Maija E. Marushchak, Carolina Voigt, Alexey Faguet, Dmitry Kaverin

ARKTIKO meeting, 20 November 2018, Helsinki

Steps towards constraining the circumarctic N2O budget in the frame of the NOCA project AKA/RFBR project, 2018-2020

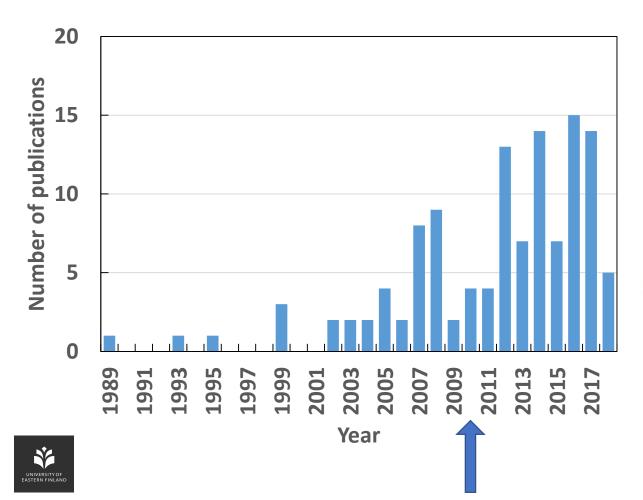

Background: Permafrost C studies

Literature search in Web of Science:

(N2O OR nitrous oxide) AND (arctic OR permafrost) AND soil

nature geoscience

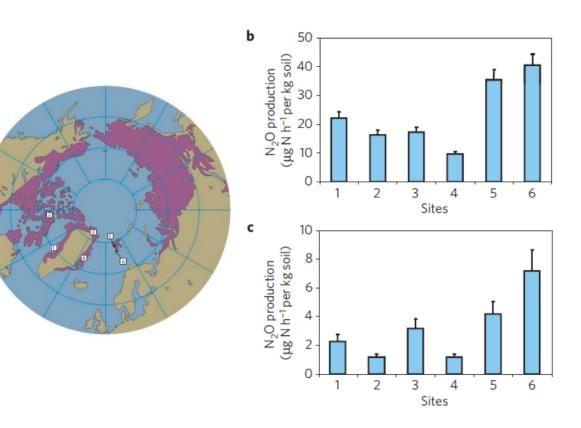
PUBLISHED ONLINE: 15 FEBRUARY 2009 | DOI: 10.1038/NGE0434


Large N_2O emissions from cryoturbated peat soil in tundra

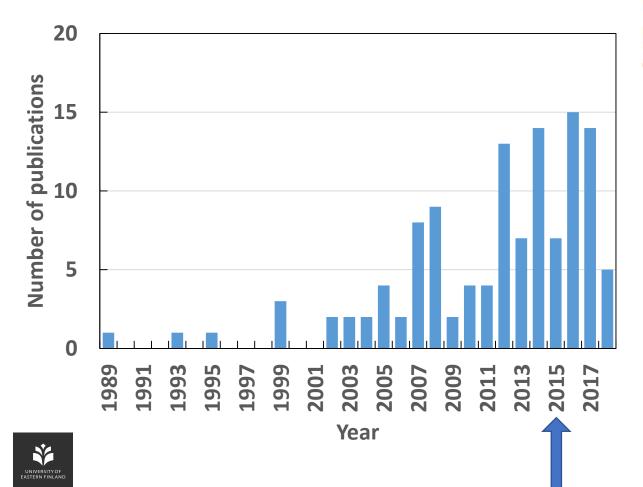
Maija E. Repo¹, Sanna Susiluoto², Saara E. Lind¹, Simo Jokinen¹, Vladimir Elsakov³, Christina Biasi¹, Tarmo Virtanen² and Pertti J. Martikainen¹*

Literature search in Web of Science:

(N2O OR nitrous oxide) AND (arctic OR permafrost) AND soil

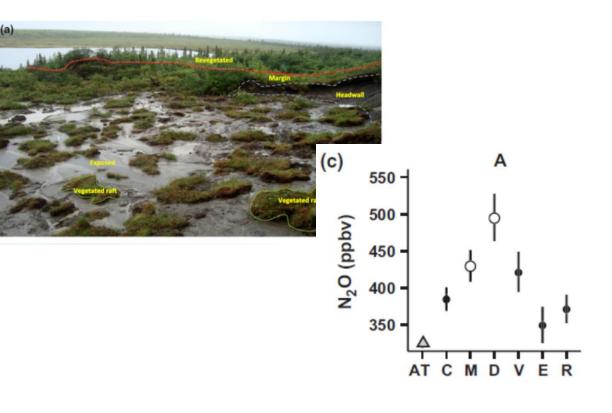


LETTERS PUBLISHED ONLINE: 4 APRIL 2010 | DOI: 10.1038/NGE0803


High nitrous oxide production from thawing permafrost

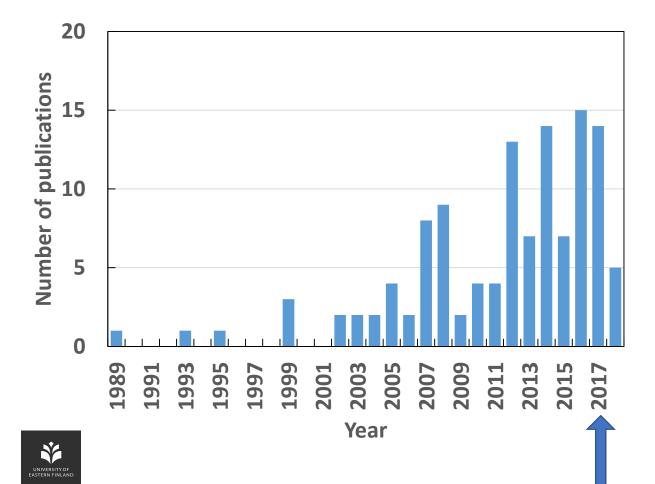
Literature search in Web of Science:

(N2O OR nitrous oxide) AND (arctic OR permafrost) AND soil


Global Change Biology

Global Change Biology (2015) 21, 4570-4587, doi: 10.1111/gcb.13069

Permafrost collapse alters soil carbon stocks, respiration, CH_4 , and N_2O in upland tundra


BENJAMIN W. ABBOTT^{1,2} and JEREMY B. JONES²

¹OSUR, CNRS, UMR 6553 ECOBIO, Université de Rennes 1, Rennes, France, ²Department of Biology and Wildlife and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA

Literature search in Web of Science:

(N2O OR nitrous oxide) AND (arctic OR permafrost) AND soil

Permafrost Nitrous Oxide Emissions Observed on a Landscape Scale Using Airborne Eddy Covariance Method

Jordan Wilkerson¹, Ronald Dobosy^{2,3}, David S. Sayres⁴, Claire Healy⁵, Edward Dumas^{2,3}, Bruce Baker², and James G. Anderson^{1,4,5}

⁵ ¹Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; ²Atmospheric Turbulence and Diffusion Division, NOAA/ARL, Oak Ridge, TN 37830, USA; ³Oak Ridge Associated Universities (ORAU), Oak Ridge, TN 37830, USA; ⁴Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; ⁵Department of Earth and Planetary Sciences, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1108 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 19 October 2018 © Author(s) 2018. CC BY 4.0 License.

Figures and Tables

flying around 15 m above the surface.

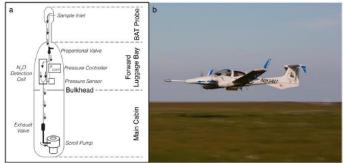
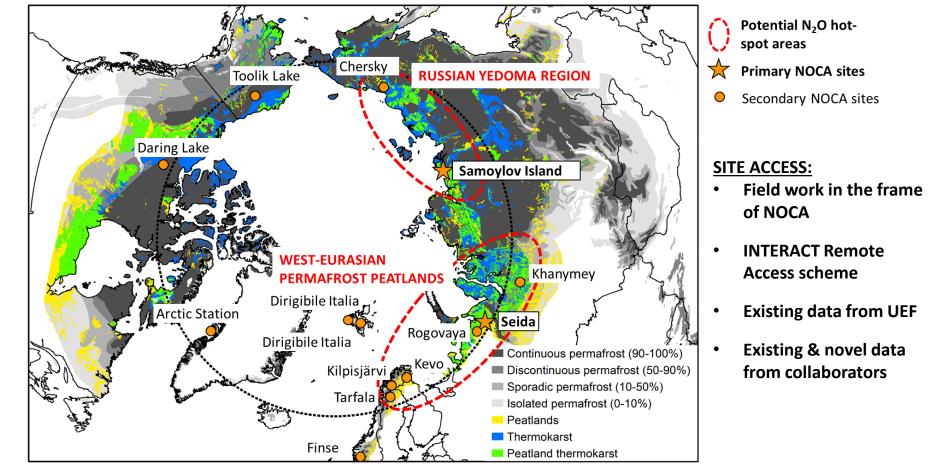



Figure 1. FOCAL during flight, a. Top-down schematic of the atmospheric gas 1 Table 2: Observed flux averages. Area covered is the footprint scope of the measurements made for each flight. Spatially sample inlet is located on the BAT probe, located at the nose of the plane. The ga averaged fluxes are presented with bootting-derived 90% confidence intervals in parentheses. Asterisks indicate mean flux is 5 detection cell of the ICOS spectrometer, located within the luggage bay in front of significantly presertem to up (3) on "s' (p < 0.01).

Flight date DD.HH	Area covered (km ²)	Mean N₂O flux (μg N₂O m ⁻² s ⁻¹)
25.18	90	0.05* (0.031, 0.082)
27.11	86	-0.01 (-0.035, 0.028)
27.19	22	0.015 (0.004, 0.032)
28.10	69	0.10* (0.068, 0.140)
28.15	44	0.04 (0.005, 0.080)
All flights	311	0.043* (0.025, 0.055)

Main aim of NOCA

....is to produce the first circumpolar N₂O budget

Modified from Voigt et al. (2017), PNAS.

ACCESSING THE ARCTIC

Tarfala: Radar measurements on a glacier in the winter. Photo: Peter Jansson

What is "Transnational Access" within INTERACT?

The INTERACT project under EU H2020 provides altogether 7800 person-days of Transnational Access (both physical and remote) in 2016-2020. Access is offered to 43 research stations located in the Arctic and northern alpine and forest areas in Europe, Russia and North-America.

The sites represent a variety of glacier, mountain, tundra, boreal forest, peatland and freshwater ecosystems, providing opportunities for researchers from

Remote Access is a form of Transnational Access in which the user(s) do not visit the infrastructure/installation physically themselves; instead the staff of the infrastructure/installation is conducting the study/collecting the samples/doing the monitoring for the user(s) according to their research plan.

UNIVERSITY OF EASTERN FINLAND TA calls are open annually for scientists and research groups (=users/user groups) to apply Transnational Access.

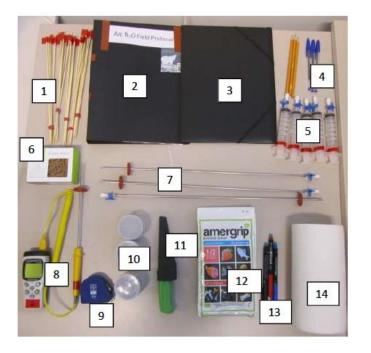
Transnational Access includes:

atural sciences to human dimensio

- Free access for eligible user groups to research facilities and field sites
- Support for travel and logistics costs
- Free access to information and data in the public domain held at the infrastructures

Methods

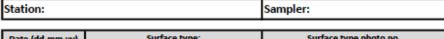
"Simple, harmonized methods, easily applicable at all kinds of sites by anyone will be used."


- static chamber measurement (if possible)
- soil gas sampling for determination of N2O fluxes
- surface soil sampling
- temperature and moisture measurements
- vegetation description with photographs of the sites.

<u>Protocol</u>

Field template

Demonstration videos


INTER=ACT

ACADEMY OF FINLAND

Field protocol:

Determination of soil N₂O fluxes by a diffusion gradient method

Version 1

Field template for INTERACT Remote Access project Arc-N₂O

Date (dd.mm.yy)	Surface type:	Surface type photo no.

AMBIENT AIR SAMPLING (FIELD PROTOCOL PAGE 4)

Ambient air sample no.	Syringe no.	Vial no.	Sample comment
1			
2			
3			

SOIL GAS SAMPLING (N₂O flux determination) (FIELD PROTOCOL PAGE 4)

Plot no.	Local time (hh:mm)	Sampling depth	Syringe no.	Vial no.	Sample comment
1		5 cm			
Plot coordinates	Plot photo no.	10 cm			
		20 cm			

Plot no.	Local time (hh:mm)	Sampling depth	Syringe no.	Vial no.	Sample comment
2		5 cm			
Plot coordinates	Plot photo no.	10 cm			
		20 cm			

Plot no.	Local time (hh:mm)	Sampling depth	Syringe no.	Vial no.	Sample comment
3		5 cm			
Plot coordinates	Plot photo no.	10 cm			
		20 cm			
Plot no.	Local time (hh:mm)	Sampling depth	Syringe no.	Vial no.	Sample comment

Contents

1.	Contact information	.1
2.	Equipment	.2
3.	Principle of the method, short description and aim of the project	.3
4.	Field sampling	.4
	A. Plot selection	4
E	3. Ambient air sampling	4
0	C. Soil gas sampling	4
I	Method 1: Well-drained soils	.5

Method 2: Water saturated soils (if sampling of soil gas is not possible because you get water to

Remote Access Sampling 2018

Toolik Lake

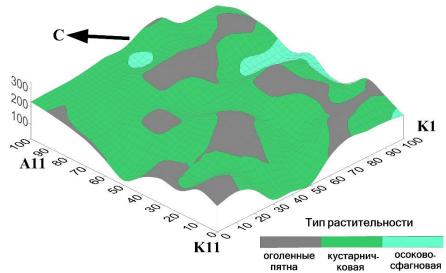
Petuniabukta, Sptzbergen

Remote access to 8 INTERACT stations, 5 stations sent samples

- Focus in spatial screening of N₂O sinks and sources
- Measurements took place during peak growing season
- Quick and simple methods, successfully applied
 - Soil gas samples
 - Soil samples
 - Auxiliary data

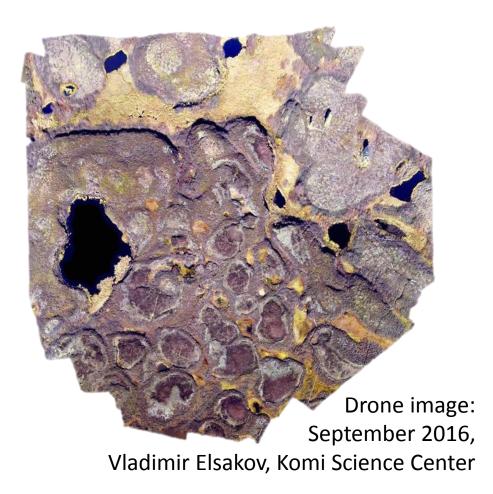
Finse station, Norway

Own field work in 2018


Two Russian peat plateaus sites: Seida and Rogovaya

Field work in key NOCA sites

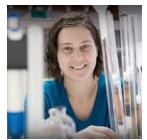
- Focus in spatial screening of N₂O sinks and sources
- Measurements during peak growing season
- Quick and simple methods, successfully applied in previous projects
 - Manual flux chambers
 - Soil gas sampling & diffusion calculation



Upscaling of N₂O sources and sinks

Seida, West Russian permafrost peatlands

- Drone imaging
- Complementary vegetation and soil surveys


Lena Delta, NE Siberian Yedoma Region

• Detailed vegetation & soil surveys within the area of previous drone images

NOCA project team

Biogeochemistry Research Group University of Eastern Finland (UEF) Kuopio, Finland

UNIVERSITY OF EASTERN FINLAND

PI: Dr. Christina Biasi

Dr. Maija Marushchak

Dr. Carolina Voigt

Institute of Biology Komi Science Center (KSC) Syktyvkar, Russia

PI: Dr. Dmitry Kaverin

Dr. Alexander Pastukhov

Dr. Vladimir Elsakov

Trofimuk Institute of Petroleum Geology and Geophysics (IPGG) Novosibirsk, Russia

Dr. Alexey Fague

Massachusetts Institute of Technology Dr. Ali Ibrahimi

Alfred Wegener Institute Dr. Guido Grosse Dr. Anne Morgenstern

Stockholm University Dr. Gustaf Hugelius

Number of collaborators operating at study sites across the Circumarctic

Thank you!

and the second

Renge to

