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From systems biology to synthetic biology
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Identify system modules (sub-networks),  |dentify control properties (driver nodes),
which can be subsequently modelled which can be used to engineer the system
(understood) using mathematical models  to yield significant and predictable impact



Biological engineering at different levels

3. Entire organism (and environment)
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Synthetic pathway is introduced as a micro-scale (pink) module. The functionality of
the pathway is influenced by the macro-scale (yellow) sub-system, we define as
‘sphere’ of the partial controllability. Driver elements (X) responsible for this macro-
scale partial controllability will be identified and engineered to maximize product.



Our approach

For complex networks with multiple regulatory mechanisms,
understanding the regulation and robustness of networks is
the key to control their behavior.

Our approach will be based on quantitative network modeling
and identification of the control (or driver) nodes, targeted
engineering of which can influence the dynamic network
behavior in a highly predictable and significant manner.

We will address a so-far unexplored approach, namely partial
controllability of biological networks, in which controlling
only a specific sub-network might be experimentally possible,
yet sufficient for many practical applications.

The aim is to create synthetic biological design tools that can
guide the targeted network re-programming to maximize the
outcome product (e.g. optimize metabolic pathway flux or
inhibit cancer signaling pathways).



Network control modeling

* Non-linear, quantitative and Quantitative

dynamic network model
* Model optimization with
response to synthetic control

Network control analysis

* System-level network
construction applications

* Prediction of key targets and
network driver elements

FA/membrane

WP3 - Jones
Sustainable
biofuel
production

FUEL

WP1 - Petre

modeling
framework

WP2 - Aittokallio

Targeted
network
analysis

WP4 -Wennerberg

Targeted
anticancer
therapies

Synthetic network control biotechnology

* Predicted engineering of metabolic flux
to optimize catalytic system

* Experimental validation of network
control principles

Reverse engineering of cancer networks

* Controlled perturbations through
targeted siRNA and drug delivery

* Personalized multi-target treatment
strategies for killing cancer cells

WP1+2: model network
and identify sets of
experimentally
actionable nodes to
control a specified part of
the network behavior.

WP3: targeted
engineering of the
control nodes (X) to
enable optimization of
metabolic pathways and
networks in order to
maximize biofuel
production.

WP4: detected control
nodes (e.g. cancer
drivers) or their
interactions (synthetic
lethal interactions) are
used to detect druggable
vulnerabilities of cancer
networks to selectively
inhibit cancer cells.



Bridging the layers: towards integration of signal
transduction, regulation and metabolism into
mathematical models
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Network control identification and exploitation
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(a) Construct a sub-network model for the biological system. (b) Identify the part
of the sub-network that should be controlled (green nodes). (c) Compute the set
of actionable control nodes (red). (d) Engineer the control nodes to drive the
network into a more favorable dynamics and internal state (yellow nodes).




Sustainable biofuel application case

1) To experimentally evaluate the
network control conceptin a
relatively simple and well-understood
metabolic system (distribution of flux
between glycolysis and the pentose
phosphate pathway in E. coli)
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2) To utilize the developed network
control identification process to
optimize host metabolism for the Gly-3-P O
renewable production of biofuel Fru-6-p
(through fatty acid biosynthesis)

() Sed-7-P Phosphate
O Gly-3-P
Pathway

Outcome: Identification of key-regulatory elements will speed-up and
enable us to optimize metabolically engineered systems and consequently
enhance our chances to reach economically sustainable biofuel production



1)

2)

Targeted cancer treatment application

To identify novel combinatorial drug
targets for given cancer cells and

evaluate their therapeutic effects

initially using chemical perturbations
and targeted RNAi knockdowns in |
breast cancer cells in vitro —~ -

To apply the optimized principles in
primary AML patient cells ex-vivo to
identify individualized and druggable
vulnerabilities that can kill target
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cancer cells without severe side- Example of MDA-MB-231 breast cancer

effects to healthy control cells

Outcome: Identification of targets that maximize selective cancer killing will
facilitate the prioritization of targeted therapeutic strategies into clinical
applications (perhaps using CRISPR-based genetic therapies in the future)
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Pilot validation using siRNA double knock-downs
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Significant differences between the
model-selected kinase targets, when
silenced individually or in combination
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Model-predicted synergy score

The synergy score predicted by the model
correlated significantly with the synergy score
calculated based on double siRNA screen




Future challenge: Controlling the complexity
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Downstream network-level effects of single drug/node perturbation in MDA-MB-231 cells



