The Finnish Programme for Centres of Excellence in Research is one of the key funding instruments through which the Academy of Finland seeks to promote the development of creative research environments.

The fourth Centre of Excellence Programme (2008–2013) involves 18 units, all at the international cutting edge in their respective fields. This brochure describes how the Academy implements the National Strategy for Centres of Excellence in Research and introduces the Centres of Excellence appointed for the 2008–2013 term.

Partners 2008–2013

Finnish Programme for Centres of Excellence in Research 2008–2013
Contents

Academy of Finland – the prime funding agency for science and research 4

Centres of Excellence in Research 2008–2013 6

Blooms of cyanobacteria: A source of medicines and bioenergy! Eva-Mari Aro 12

From tough and mean to intelligent machines Aarne Halme .. 14

Mitochondrial research starts second term Howard Jacobs ... 16

Music – An integral part of our life from cradle to grave Petri Toiviainen .. 18

Centres of Excellence in Research 2008–2013 Contact information ... 20

Centres of Excellence in Research 2000–2005
Centres of Excellence in Research 2002–2007
Centres of Excellence in Research 2006–2011 22
The Finnish Programmes for Centres of Excellence in Research are one of the key funding instruments for internationally cutting-edge research and large-scale research teams. A Centre of Excellence (CoE) is a research and researcher training environment with shared aims and clearly defined research goals. Working under a common management, the CoE can consist of one or more research teams based at a university or research institute or spread across different organisations. CoEs can also have collaboration with private sector companies.

CoEs are funded for a period of six years, which means they are well-placed to pursue entirely new avenues of inquiry and engage in high-risk research. CoE funding also provides a great chance for breakthrough research in technically oriented fields where funding is not as long-term. Funding for CoEs comes not only from the Academy, but also through their host organisations, i.e., universities and research institutes. Depending on the programme, contractual funding is additionally provided by Tekes, the Finnish Funding Agency for Technology and Innovation, foundations and business companies. Both the public and private sector benefit from the transfer of knowledge from CoEs. Centres of Excellence are encouraged to work closely with business and industry, for example through Strategic Centres for Science, Technology and Innovation. As well as putting research results to work, businesses can themselves contribute to research by networking with CoEs or even by working as part of a CoE. This allows for the free movement of researchers between research teams if and as necessary.

Long-term cooperation between the scientific community, business and industry, society and research funding agencies is key to improving the international competitiveness and impact of Finnish science and research.

Centres of Excellence and internationality

Researchers are keen to find the best partners who can help advance and promote their own research. Top-level research is therefore an exercise in international cooperation that requires both national and international funding. The Academy has a number of bilateral agreements with science funding agencies and research organisations from China, India, Japan, Russia, South America and other countries. Under these agreements, funding can also be provided to support cooperation among CoEs. Funding is made available for purposes of research cooperation, researcher mobility and training, and the organisation of joint seminars and scientific meetings. CoE's not only give added visibility to research and strengthen cooperation, but also boost the growth of multidisciplinary and interdisciplinary research.

A well-established funding system

Appointed by the Ministry of Education on the Academy's recommendation, Finland's first twelve Centres of Excellence in Research were selected for the term 1995–1999. A further five units were later appointed by the Ministry for 1997–1999.

The National Strategy for Centres of Excellence in Research was developed and adopted in 1997. This strategy draws on the key principles of science and technology policy that are aimed at enhancing the quality and international competitiveness of Finnish science and research and at increasing its visibility. Overall responsibility for the development and implementation of the strategy rests with the Academy.

In the first Finnish Programme for Centres of Excellence in Research (2000–2005), funding was provided for 26 CoEs and seven core facilities organisations. The latter comprised at least one CoE and other high-level research teams for which the organisation provided various services. Academy funding for the programme amounted to 48.8 million euros, while Tekes granted 12.8 million euros to eleven units.

Under the second CoE programme (2002–2007), the Academy provided funding worth 33.1 million euros to 16 units. Tekes funding was 5.3 million euros, which was shared by six units.

The third CoE programme (2006–2011) involves 23 units. Seven of them are newcomers to the programme; 16 were also funded in the first programme but they have revised and updated their research plans. During 2006–2008, Academy funding for the third CoE programme will amount to 28.5 million euros. Tekes is contributing two million euros and Nokia 0.3 million euros. CoEs and their projects are also eligible to apply for other competitive funding from the Academy and Tekes.

The Academy of Finland’s mission is to finance high-quality scientific research, act as a science and science policy expert, and strengthen the position of science and research. The Academy works to contribute to the renewal, diversification and increasing internationalisation of Finnish research. Its operation covers the full spectrum of scientific disciplines.

The Academy supports and facilitates researcher training and careers in research, internationalisation as well as the practical application of research results. The Academy is keen to emphasise the importance of the impact of research and breakthrough research by encouraging researchers to submit boundary-crossing funding plans that involve risks but that also offer promise and potential for scientifically significant breakthroughs.

The Academy funds research annually with around 260 million euros, which accounts for 16 per cent of government R&D spending. Each year the Academy receives funding applications worth 1.1 billion euros.

Funding is provided for research projects, research programmes, Centres of Excellence in Research, research posts, foreign visiting professors' work in Finland, researcher training, international networking and research collaboration between universities, research institutes and business companies. Each year Academy-funded projects account for some 3,000 researcher FTEs at universities and research institutes.
Intelligent mobile machines are an area of strong growth in technology industry. They are set to profoundly change people’s everyday life over the next few decades and to open up whole new vistas for industrial product development. Finland’s technology industry in this field is highly advanced and exports will certainly benefit from its further development.

The CoE is a globally significant player that is engaged in a diverse range of activities.

Research on Mitochondrial Disease and Ageing
Howard Jacobs University of Tampere, University of Helsinki

The CoE focuses on researching mitochondrial diseases: a diverse and surprisingly common group of diseases characterised by mitochondrial dysfunction. As yet there is no cure for these diseases.

Mitochondrial diseases typically occur in organs and tissues that are the most dependent on energy produced by oxygen, for instance, the heart, the brain, and muscles.

Scientists at the CoE are interested to study genes, proteins and mechanisms involved in the replication and repair of mitochondrial DNA as well as DNA replication into daughter cells. Another area of interest is in diseases involving dysfunctions in these mechanisms. The main objective is to gain a deeper understanding of the cellular mechanisms responsible for mitochondrial diseases and to develop treatments for these diseases.

Genetic defects accumulate in the mitochondrial genotype even in the process of normal ageing. Scientists believe that these defects are associated with many ageing-related characteristics. Therefore another major focus of research at the CoE is on the mechanisms of normal ageing.

Host Defence Research
Sirpa Jalkanen University of Turku, University of Helsinki, National Public Health Institute

The CoE’s main research interests include the function of viruses, bacteria and cancer cells as well the defence mechanisms of the human body.

Molecular Imaging in Cardiovascular and Metabolic Research
Jubani Knautti University of Turku, Åbo Akademi University, Turku University Hospital

The CoE’s research agenda focuses on resolving the underlying mechanisms of cardiovascular diseases, metabolic syndrome and diabetes and on developing tools for the prevention, diagnosis and treatment of these diseases.

In the field of cardiac research, the aim is to develop new imaging methods that will help to determine the risk and severity of coronary heart disease and heart failure and to guide the therapy of these diseases. In diabetes research, the aim is to elucidate the interactions between different organs, such as adipose tissue, the liver, central nervous system and heart in the pathogenesis and development of the diseases. This will pave the way to developing and testing new treatments.

Philosophical Psychology, Morality and Politics: Human Conduct in the History of Philosophy
Simo Knuuttila University of Helsinki, University of Jyväskylä

The main concern of the CoE is to study the psychological assumptions that lie behind ethical and political theories in the history of philosophy from Antiquity to Enlightenment.

Research into the history of philosophy has recently made important breakthroughs and influenced the development of systematic philosophy. Studies in philosophical psychology, for their part, have extended to take in the psychological background of classical theories of ethics, social practices and politics.

As well as conducting a series of separate studies, the CoE will be working to compile an exhaustive handbook on the history of the psychological background of ethics and social philosophy.
Research at the CoE is aimed at reducing the scientific uncertainty that continues to surround climate change. One of the major uncertainties is to do with aerosol particles, and particularly with the interactions between aerosol particles, clouds, and climate. To resolve these uncertainties an in-depth, multidisciplinary understanding is needed on the formation and dynamics of both aerosol particles and cloud droplets, as well as on the interactions between atmosphere and biosphere.

The CoE engages in both experimental and theoretical research. The former relies primarily on continuing measurements taken at field stations as well as measurement campaigns all over the world. An important aspect of the experimental work is to develop and produce new measurement instruments, which involves working closely with businesses companies. On the theoretical side, the main effort is devoted to creating new theories, developing new models and performing extensive simulations.

The CoE is the world’s leading research unit in its field. The continuity and diversity of its measurements have given it a clear headstart.

Analysis and Dynamics Research

Antti Kupiainen
University of Helsinki, University of Jyväskylä

The CoE’s main area of research is mathematical analysis and its applications in mathematical physics and biology. The red thread that ties together research at the CoE is dynamics. Key areas of research include dynamic models in physics, biology and practical applications. Another major area of interest is in the mathematical theory of phenomena occurring within these models, such as chaos, fractals and turbulence.

The aim is to create a stronger link between mathematics and applications. For instance, theoretical studies of turbulence have led to cooperation with the process industry; studies in statistical mechanics have found applications in the field of wireless mobile networks, and theories of geometric analysis in medical tomography.

Public Choice Research

Hanna Nurmi
University of Turku, Turku School of Economics

The CoE’s focus of research is to explore phenomena and institutions that have to do with the interaction between politics and economy. The aim is to gain an overall view of the principles of democratic governance and institutional design. One area of special interest is the process of democratic selection as well as the operation and development of multi-member decision-making bodies. Furthermore, researchers at the CoE are interested in the principles of cost-benefit sharing in multi-member organisations such as the European Union.

Relations between the public and private sector are one of the most traditional areas of study in public choice research. Specific interests include factors impacting the size and structure of the public sector, relations between business and government as well as systems of income distribution in different countries. Answers will be sought to such questions as how changes brought about by globalisation affect the powers and functions of government.

Microbial Food Safety Research

Airi Palosa
University of Helsinki

The CoE addresses some of the key microbiological challenges in the food production chain. Microbiological factors have a significant bearing on food safety and quality. Modern production processes and cold chains have changed the microbial ecological conditions of food production.

Food safety ultimately translates into consumers’ well-being and intestinal health. Indeed, key areas of research at the CoE include the human intestinal microbiota, foodborne diseases, the characteristics of bacteria and the mechanisms governing the interaction between microbes and hosts.

The knowledge coming out of the research will have important practical application in preventing intestinal infections and in examining intestinal health. Furthermore, it will help to improve process hygiene; protect consumers against bacteria responsible for food spoilage; and reduce food industry losses due to premature product spoilage.

The diversity and multidisciplinarity of this research makes it a unique undertaking in the whole of Europe.

White Biotechnology – Green Chemistry Research

Merja Penttilä
VTT Technical Research Centre of Finland

The CoE is committed to developing new biotechnological and chemical methods for the efficient production of chemicals, materials and fuels from renewable natural resources.

The use of plant materials instead of oil can help reduce both industry dependence on fossil fuels and carbon dioxide emissions into the atmosphere.

White or industrial biotechnology combined with green chemistry has a vital role to play in developing sustainable production processes that help save energy and the environment.

The development of efficient production strains requires understanding on the regulation of the physiology of production microbes as well as the use of systems biology methods.

Functional Materials

Jarl B. Rosenholm
Åbo Akademi University, University of Helsinki

The CoE’s research is focused on the manufacture of physicochemically interactive fibre-based materials used primarily in the paper and packaging industry as well as on the functionalisation of these materials by way of printing methods. ‘Functional’ refers here to a predicted, immediate or delayed response of the material to an external stimulus.

The purpose is to develop tailored intelligent products to take the place of mass products that are on the decline. Examples are hybrid media applications for the printing industry and ICT industry, integrated product applications for the healthcare industry and food and pharmaceutical packagings, including quality assurance for paper and packaging products, transport tracking and authenticity assurance.

The units involved in the CoE have unique interdisciplinary expertise.
The CoE conducts high-level research and training in radio science and engineering and wireless data communications. Key areas of research include high frequency, microwave and millimetre wave engineering, multi-antenna systems, multi-standard radios, the design of integrated circuits for data communications and signal processing in wireless data communications.

Intelligent multi-antenna systems and multi-standard radios allow for more efficient and flexible use of radio spectrum. Intelligent radio sensors and millimetre wave radios allow for more efficient and flexible use of radio spectrum.

The CoE’s research agenda deals with the way in which people listen to music, experience music and perform music. Special areas of interest include the perception and learning of music, musical emotions and the connections between music and movement.

These research interests tie in closely with the role of music in promoting well-being: the cognitive, emotional and motor effects of music therapy rehabilitation, the use of technology for the advancement of musical expression, the occurrence and prevention of stage fright in musicians, the use of music in controlling emotions and the role of music in learning a foreign language.

The CoE is an exceptionally broad and interdisciplinary undertaking in the field of music research. Among the disciplines represented are musicology, music therapy, psychology, cognitive science, brain research, biomedicine, computer science and physics.

The CoE’s research agenda deals with the way in which people listen to music, experience music and present and perform music. Special areas of interest include the perception and learning of music, musical emotions and the connections between music and movement.

These research interests tie in closely with the role of music in promoting well-being: the cognitive, emotional and motor effects of music therapy rehabilitation, the use of technology for the advancement of musical expression, the occurrence and prevention of stage fright in musicians, the use of music in controlling emotions and the role of music in learning a foreign language.

The CoE is an exceptionally broad and interdisciplinary undertaking in the field of music research. Among the disciplines represented are musicology, music therapy, psychology, cognitive science, brain research, biomedicine, computer science and physics.
Blooms of cyanobacteria: a source of medicines and bioenergy!

For many people, cyanobacteria (blue-green algae) mean just one thing: that late in the summer, they can no longer go swimming off their favourite beach. For scientists, however, the blooms of cyanobacteria are a complex phenomenon full of opportunities, from the production of medicines to the generation of bioenergy.

"Cyanobacteria have received surprisingly little research attention," says Academy Professor Eva-Mari Aro, who is in charge of the CoE in Integrative Photosynthesis and Bioactive Compound Research at Systems Biology Level at the University of Turku. "There are thousands of cyanobacterial strains, and they differ from one another quite substantially."

Scientists at the CoE are working to explore the metabolism of cyanobacteria, from the event of photosynthesis through to the formation of metabolic products. The results of their studies have practical application in the production of energy, bioactive substances and other compounds useful for research purposes. At the same time, the work will help to shed light on the ecology of cyanobacteria and on methods of controlling blooms.

Photosynthetic mechanism, biohydrogen energy and medicines

Ultimately, the aim and purpose is to put the life-sustaining mechanism of photosynthesis to use in the production of clean energy.

"The photosynthetic mechanisms where oxygen is released are the same in plants and cyanobacteria," Aro explains. "The creation of artificial photosynthesis requires an understanding of the basic mechanisms involved, and our research will contribute to that understanding."

Through photosynthesis, cyanobacteria can produce hydrogen out of water and sunlight – a clean fuel using an inexhaustible source of raw material. "We urgently need CO2-neutral ways of generating energy," Aro points out. The capacity of natural hydrogen production in cyanobacteria is quite limited, but scientists at the CoE are now searching for more efficient strains in the natural environment and applying the tools of biotechnology to boost their production capacity.

"Apart from hydrogen, cyanobacteria produce a whole range of bioactive compounds," Aro says. Knowledge about these compounds remains limited, but photosynthetic mechanisms are closely involved in the production process. "We’re trying to find out what kinds of compounds are produced by these bacteria, what these compounds are capable of doing, and how we could use them."

CoE well-placed to undertake broadly-based research

The CoE is composed of research teams from the University of Turku Department of Biology and the University of Helsinki Department of Applied Chemistry and Microbiology. The main focus of work for the unit in Turku under Professor Aro is on the mechanisms of photosynthesis, while the Helsinki unit under Academy Professor Kaarina Sivonen is chiefly interested in the production of toxins and bioactive compounds, genomics and ecology. Professor Mirja Salkinoja-Salonen is investigating the metabolism of different kinds of micro-organisms.

"We’ll be combining the use of many different methods in order to gain a system-level understanding," Aro says. "No cellular events happen in isolation of one another, instead they’re all controlled under one comprehensive regulatory network."

Aro says that the granting of CoE status has a surprisingly large impact: "You gain more respect and esteem, more publicity, and the whole research team gets resources needed for a longer-term, concerted research effort."
"Machines are in competition now to become intelligent," says head of the CoE in Generic Intelligent Machines Research, Professor Aarne Halme from Helsinki University of Technology (HUT). "The competitive edge is no longer gained by the iron construction of machines, but instead by automation."

When mechanics is enhanced with intelligence and the ability to move, a whole range of systems are needed to control the machine's functions, such as power generation, environmental sensing and communication. Scientists at the CoE are interested to study the basic problems that occur in these subsystems by validating practical solutions with prototypes rather than by means of simulation.

"In engineering sciences, research isn't over until validation has been done with real machines," Halme says and continues: "Engineering sciences create the world, they don't explain it."

Much room for development

Halme is keen to point out there is still much room for development in machines: "An example is to improve power and energy transmission systems in mobile machines by improving their control functions."

The productivity of robot-like intelligent machines is significantly boosted by learning. The development of learning skills, then, requires an effort to develop sensing methods such as vision, hearing and touch, as well as the machine's capacity for cognition. "As the baby boom generation continues to age, these topics are attracting growing attention, for instance, when designing mobile service robots assisting the elderly. These robots need to be designed for maximum utility. A machine is badly designed, if using it loads the user."

Apart from individual robots, another focus of research is dedicated to robot communities and their control and communication structures.

Revised research agenda will yield international results

The CoE in Generic Intelligent Machines Research has been re-appointed to the Centre of Excellence programme with a sharply revised research agenda. The unit has two research teams: the team working under Professor Halme at the HUT Automation Technology Laboratory and the team under Professor Matti Vilenius at Tampere University of Technology's Institute of Hydraulics and Automation, which also had CoE status during the 2000–2005 term. The newly revised research agenda and the unit's close integration with the current CoE organisation have given it a whole new direction.

Effective networking is important to every Centre of Excellence. The CoE in Generic Intelligent Machines Research has launched its own infrastructure programme to develop a hardware environment suitable for the verification and validation of results that is accessible to the two units that are physically separated from each other. "The online laboratory allows researchers to use the machinery and hardware from both Helsinki and Tampere. Creating a workable environment is a tough challenge, even by international standards."

Information moves from one level to the next

"The core teams will include members from both Tampere and Helsinki. Under each work programme we’ll appoint senior researchers who’ll be involved in different teams and convey information between these teams," Halme explains.

External partners include the Forum for Intelligent Machines (FIMA) as well as international research teams. Globally, there is very active and lively research especially in the field of new advanced robotics.

On a national level, the CoE has excellent cooperation with industry – for good reason. "Industrial machinery manufacturers are an important cornerstone for Finnish technology industry," Halme emphasises. "We’re working to help this industry thrive in an environment of intense international competition."

"The involvement of industry doesn’t mean we’ll be compromising our scientific objectives – quite the contrary," Halme underlines. "Our business partners will often be able to pick up on an idea and continue to process it, so our valuable research results will certainly not remain unused."

"Commercial work always brings an extra element of pressure," Halme points out. "Our CoE status brings some relief from this pressure and what we wanted – the freedom to focus on our research."
Mitochondrial research starts second term

“Diseases caused by malfunction of the mitochondria, the power stations of our cells, are very common,” says Academy Professor Howy Jacobs from the University of Tampere Institute of Medical Technology (IMT).

“Mitochondrial disorders are possibly associated with degenerative diseases that increase with advancing age, such as Parkinson’s disease, old age diabetes, cardiovascular disease, eye and muscle diseases, hearing defects, infertility and certain types of cancer. It’s a vast area of research,” Jacobs explains.

Jacobs is in charge of the CoE in Research on Mitochondrial Disease and Ageing. During the 2002–2007 term, the Finnish Research Unit on Mitochondrial Biogenesis and Disease (FinMIT) focused on basic disease mechanisms. Now, the main challenge is to develop treatments for as-yet-incurable mitochondrial diseases, or at least to find ways to arrest their progression.

Developing new methods of treatment

Using model systems developed earlier, scientists at the CoE are now studying degenerative diseases of the nervous system, trying to find new treatments and to understand the normal and ageing-related function of mitochondria.

“We’re looking to find out how mitochondrial DNA is copied from one cell generation to the next, and how it’s influenced by disease mutations and environmental factors,” Jacobs explains.

“Diet, new drugs and gene technology all offer potential new solutions,” Jacobs says. In their search for new treatments, the teams are making use of both libraries of pharmaceutical compounds and model organisms such as fruit flies and zebra fish. A promising new gene therapy technique is known as metabolic by-pass, going round blockages in biochemical reaction pathways.

“By the end of our term, we hope to be in the position to sign commercial partnerships,” Jacobs adds.

An exercise in international cooperation

The CoE in Research on Mitochondrial Disease and Ageing is made up of four research teams from IMT and the Research Programme of Molecular Neurology at the University of Helsinki. Offering a unique combination of clinical, genetic, physiological, biochemical and pharmacological approaches, the teams are led by Howy Jacobs, Professor Anu Wartiovaara, Academy Research Fellow Hans Spelbrink and Academy Research Fellow Brendan Battersby.

The CoE represents a broad cross-section of international expertise at the highest level. Jacobs describes the Centre’s strong interdisciplinary and international representation as a valuable asset in their attempts to unravel this complex phenomenon.

Indeed, this is very much an exercise in international cooperation. The research involves 50 scientists from almost 20 different countries, and the leaders of the research teams represent four different nationalities. The CoE also has active research collaborations with cognate research teams in the UK, France, the US, Canada, Japan and other countries.

“Top-quality science is inherently international. We present our results to an international audience, and national frontiers are irrelevant,” Jacobs points out.

“We have an international organisation and that helps us to recruit the best people from whatever country. This is also an investment in the future, because it’s easier for our students and postdocs to make the move from this international environment to the best institutions worldwide. In due course, the skills and expertise picked up by these people are returned to Finland. Finally, it helps to strengthen the international standing of Finnish science.”

“Our CoE status makes it so much easier to persuade and convince international bodies to fund our research effort,” Jacobs says. “It means a great deal to us to have been recognised by the Academy, and we’ll be doing our utmost to repay their confidence. We hope our efforts will provide a solid platform for the future growth and development of mitochondrial research and medical technology.”
Music – an integral part of our life from cradle to grave

Petri Toiviainen: Interdisciplinary Music Research

“The emotions invoked by music are probably one of the main reasons why many of us listen to or play music,” says Petri Toiviainen, Professor of Music at the University of Jyväskylä.

“Music is an integral part of human culture. Tunes are present in our life from cradle to grave – in fact from womb to grave because even unborn foetuses respond to music.”

Although humans have cried, laughed and moved to the beat of rhythm since time immemorial, we continue to have a rather limited understanding of how music is processed in the brain and of the nervous mechanisms of emotions invoked by music. The same goes for how music is interwoven with the movement of the player and the listener.

Headed by Toiviainen, researchers at the CoE in Interdisciplinary Music Research in Jyväskylä are mainly interested to study how people listen to music, experience music and how they play and perform music. Applications of the new knowledge produced in this research, such as music therapy, the promotion of language learning and the reduction of stage fright, have both social, pedagogic, artistic and commercial significance.

“More than one key is needed to unlock the secrets of the staff”

“Our main areas of interest include the perception and learning of music, the origin of musical emotions and the connections between music and movement,” Toiviainen says.

Musicology, music therapy, psychology, cognitive science, brain research, biomedicine, computer modelling and physics – the researchers are applying an unusually large number of keys in their quest to unlock the secrets of notes.

“Music and the cognitive processes of the human mind are just too complex to be captured by a single method.”

Studies of movement and other hot topics

There is considerable interest in such areas as how musical skills develop and how the choice of teaching method affects the learning of an instrument; how music therapy rehabilitation works; and how music can be used to set and create mood.

The CoE will take on many topical issues: the application of brain research methods, the computational analysis of music, the role of movement in the production and reception of music. The aim is to gain an accurate scientific and computational image of musical emotions, the meanings of music and musical development.

“This research effort will also have direct practical usefulness, as Toiviainen explains: “One of the possible applications for the computer algorithms we’re developing is in the automatic analysis and classification of music on the internet. We also expect to gain a closer understanding of the potential impact of music on language learning.” Applications of movement studies will pave the way to new musical interfaces that will let people with limited movement engage in musical expression. “We also want to learn how to assess the impact and effectiveness of music therapy and in this way to develop more effective tools of diagnosis and rehabilitation,” Toiviainen concludes.
Integrative Photosynthesis and Bioactive Compound Research at Systems Biology Level
Eva-Mari Aro
Department of Biology
FI-20014 University of Turku
tel. +358 2 333 9931
evaaro@utu.fi
www.photobiomics.fi

Generic Intelligent Machines Research
Aarne Halme
Helsinki University of Technology
Automation Technology Laboratory
POB 5502, FI-02015 TKK
tel. +358 9 451 3302
aarne.halme@hut.fi
www.gim.tkk.fi

Research on Mitochondrial Disease and Ageing
Howard Jacobs
Institute of Medical Technology
FI-33014 University of Tampere
tel. +358 3 215 7731
howard.t.jacobs@uta.fi
www.finmit.org

Host Defence Research
Sirpa Jalkanen
University of Turku
Institute of Microbiology and Pathology/Medicity
Tykistökatu 6 A, FI-20250 Turku
tel. +358 2 215 4254
jarl.rosenholm@abo.fi
www.funmat.fi

Molecular Imaging in Cardiovascular and Metabolic Research
Juhani Knutti
University of Turku
Turku PET Centre
POB 52, FI-20251 Turku
tel. +358 2 313 2842
juhani.knutti@utu.fi
www.turku PET centre.fi/center.html

Philosophical Psychology, Morality and Politics: Human Conduct in the History of Philosophy
Simo Kuusuttila
Department of Systematic Theology
POB 33, FI-20241 University of Helsinki
tel. +358 9 1912 3024
simo.kuusuttila@helsinki.fi
www.helsinki.fi/teol/teol/pmp

Physics, Chemistry, Biology and Meteorology of Atmospheric Composition and Climate Change
Markku Kulmala
Department of Physical Sciences
POB 64, FI-00241 University of Helsinki
tel. +358 9 1915 0756
markku.kulmala@helsinki.fi
www.atm.helsinki.fi

Analysis and Dynamics Research
Antti Kupiainen
Department of Mathematics and Statistics
POB 68, FI-00241 University of Helsinki
tel. +358 9 1915 1460
antti.kupiainen@helsinki.fi
www.mathstat.helsinki.fi/huippu

Public Choice Research
Hannu Nuomi
Department of Political Science
FI-20241 University of Turku
tel. +358 2 333 7652
hannu.nuomi@utu.fi
www.soc.utu.fi

Molecular and Integrative Neuroscience Research
Mart Saarma
Institute of Biotechnology
POB 56, FI-00241 University of Helsinki
tel. +358 9 1915 9359
mart.saarma@helsinki.fi
www.biocenter.helsinki.fi/bi/SaarmaCoE

Microbial Food Safety Research
Airi Palva
Department of Basic Veterinary Medicine
POB 66, FI-00241 University of Helsinki
tel. +358 9 1915 7258
airi.palva@helsinki.fi
www.vetmed.helsinki.fi/mftsosa

White Biotechnology – Green Chemistry Research
Merja Penttilä
VTT Technical Research Centre of Finland
Biotechnology
POB 1002, FI-02244 VTT
tel. +358 20 722 4904
merja.penttila@vtt.fi
www.vtt.fi/coewbgc

Functional Materials
Jarl B. Rosenholm
Åbo Akademi University
Department of Physical Chemistry
Porthaninkatu 3–5, FI-20500 Turku
tel. +358 2 15 4254
jarl.rosenholm@abo.fi
www.funmat.fi

Smart Radios and Wireless Research
Antti Raisanen
Helsinki University of Technology
Radio Laboratory
POB 3000, FI-02015 TKK
tel. +358 9 17 162 075
antti.raisanen@hut.fi
http://smarad.tkk.fi

Cardiovascular Diseases and Type 2 Diabetes Research
Seppo Ylä-Herttula
University of Kuopio
A. I. Virtanen Institute for Molecular Sciences
POB 1627, FI-70211 Kuopio
tel. +358 17 162 075
seppo.ylaherttula@uku.fi
www.uku.fi/aivi

Interdisciplinary Music Research
Petri Toiviainen
Department of Music
POB 35, FI-40214 University of Jyväskylä
tel. +358 14 262 1353
petri.toiviainen@juyu.fi
www.jyu.fi/music/coe

Foundations of European Law and Polity Research
Kaarlo Tuori
Department of Public Law
POB 9, FI-00241 University of Helsinki
tel. +358 9 1912 3142
kaarlo.tuori@helsinki.fi
www.helsinki.fi/katti/foundations

Algorithmic Data Analysis Research
Esko Ukkonen
Department of Computer Science
POB 68, FI-00241 University of Helsinki
tel. +358 9 1915 1280
esko.ukkonen@helsinki.fi
www.cs.helsinki.fi/research/algoden

Centres of Excellence in Research 2008–2013
Contact information
Centres of Excellence in Research 2000–2005

- Ancient and Medieval Greek Documents, Archives and Libraries
- Cell Surface Receptors in Inflammation and Malignancies
- Center for Activity Theory and Developmental Work Research
- Centre of Excellence in Disease Genetics
- Computational Condensed-matter and Complex Materials Research Unit
- Evolutionary Ecology
- Helsinki Bioenergetics Group
- Institute of Hydraulics and Automation
- Low Temperature Laboratory: Physics and Brain Research Units
- Molecular Biology and Pathology of Collagens and Enzymes of Collagen Biosynthesis
- New Information Processing Principles
- Nuclear and Condensed Matter Physics Programme at JYFL
- Plant Molecular Biology and Forest Biotechnology Research Unit
- Program in Cancer Biology, Growth Control and Angiogenesis
- Programme of Molecular Neurobiology
- Programme on Structural Virology
- Research Centre for Computational Science and Engineering
- Research Unit for Forest Ecology and Management
- Research Unit for Variation and Change in English
- Research Unit on the Formation of Early Jewish and Christian Ideology
- Signal Processing Algorithm Group
- The Human Development and its Risk Factors Programme
- The Metapopulation Research Group
- Tissue Engineering and Medical, Dental and Veterinary Biomaterial Research Group
- VTT Industrial Biotechnology
- Åbo Akademi University Process Chemistry Group

Centres of Excellence in Research 2000–2005

- Centre of Population Genetic Analyses
- Developmental Biology Research Programme
- Finnish Research Unit for Mitochondrial Biogenesis and Disease
- Formal Methods in Programming
- From Data to Knowledge Research Unit
- Helsinki Brain Research Centre
- History of Mind Research Unit
- Research Programme on Male Reproductive Health
- Research Unit of Geometric Analysis and Mathematical Physics
- Research Unit on Economic Structures and Growth
- Research Unit on Physics, Chemistry and Biology of Atmospheric Composition and Climate Change
- Smart and Novel Radios Research Unit

Centres of Excellence in Research 2006–2011

- Adaptive Informatics Research
- Ancient Greek Written Sources
- Cancer Biology
- Complex Disease Genetics
- Computational Complex Systems Research
- Computational Molecular Science
- Computational Nanoscience
- Evolutionary Genetics and Physiology
- Evolutionary Research
- Global Governance Research
- Inverse Problems Research
- Learning and Motivation Research
- Low Temperature Quantum Phenomena and Devices
- Metapopulation Research
- Nuclear and Accelerator Based Physics
- Plant Signal Research
- Political Thought and Conceptual Change
- Process Chemistry
- Signal Processing
- Study of Variation, Contacts and Change in English
- Systems Neuroscience and Neuroimaging Research
- Translational Genome-Scale Biology
- Virus Research

For further information on Finnish Centres of Excellence in Research, visit www.aka.fi/eng > Science in society.