

Mosaic Variegated Aneuploidy (MVA)

- Rare Autosomal recessive disease
- Random loss individual chromosomes during mitosis.
- Microcephaly, pre/post natal growth restriction, global developmental delay and dysmorphic facial features
- Cancer: Wilm's Tumor, Rhabdomyosarcorma and in some case Myelodysplastic syndrome

	5	0,XX,	+X,+9,	+12,+	-21		40,	(,-X,-	6,+12,	<mark>-14</mark> ,-	-15,-	<mark>16,–17</mark> ,	-18
12	18	88			88	# #	88	22				۶ğ	
1	2	3			4	5	1	2	3			4	5
88	8 8	ងត	axa	ăň	28	8 8 8	3	릚멽	8 8	22	3.8	226	
6	7	8	9	10	11	12	6	7	8	9	10	11	12
ġń	đð	ñ ħ		¥ X	8 X	6.6	**		ê		۶	爲	\$
13	14	15		16	17	18	13	14	15		16	17	18
8 A	88			1.0	***		88	間包		æ 8	66	1	
19	20		21	22	X	Y	19	20		21	22		Y

Normal head size

Microcephaly

CCDC84/CENATAC: A novel disease gene causing MVA

Most MVA genes are part of Kinetochore or involved in accurate chromosomal segregation.

Mutated gene	# patients	Aneuploidy
BUB1B	21	9-83%
CEP57	5	15-32%
TRIP13	7	10-46%
KNL1	4	9-13%
ZWINT	2	92%
CCDC84	2	8%

Hanks et al. Nature Genetics, 2004 Snape et al. Nature Genetics, 2011 De Wolf, Yost & Hanks et al. Nature Genetics, 2017

Musacchio, A. et al. Nature Reviews Molecular Cell Biology 8, 385 (2007).

Control

CENATAC depletion

Rescue w/ wt CENTAC expression

CCDC84/CENATAC loss leads to chromosome segregation defects

H2B-mNeon

- Chromosome congression defects
- Mitotic delay

CCDC84 = coiled-coil containing 84

- Function unknown
- Nuclear but also centrosome localisation

de Wolf, B., et al. (2020). "Chromosomal instability by mutations in a novel specificity factor of the minor spliceosome." BioRxiv. DOI:2020.2008.2006.239418.

CCDC84/CENATAC is linked to U12-type spliceosome ('minor spliceosome')

Evolutionary co-occurrence analysis:

В	GO cellular component complete	Hits	Fold Enrichment	FDR	
	U12-type spliceosomal complex	5/26	89.73	1.16E-05	
	Nucleoplasm	20/3994	2.34	2.51E-02	
	U2-type spliceosomal complex	0/94	-	1.00E00	

de Wolf, B., et al. (2020). "Chromosomal instability by mutations in a novel specificity factor of the minor spliceosome." BioRxiv. DOI:2020.2008.2006.239418.

Major and minor introns

Major introns - U2-type

- ~250 000 in human genome
- "GT-AG rule" for intron termini
- Otherwise low splice site conservation
- On average ~10 introns/gene [min 0, max 363]

Minor introns - U12-type

- Rare, 700–800 in the human genome
- Splice sites (5'ss and BPS) are highly conserved
- GT-AG or AT-AC termini
- Typically one intron/gene
- Positions evolutionary conserved

A major functional difference between the spliceosomes

Major spliceosome

Alternative splicing

- Proteome diversification

Minor spliceosome

Inefficient splicing

- mRNA level regulation

Niemelä , E., Frilander, M. (2014). Regulation of gene expression through inefficient splicing of U12-type introns. RNA Biol 11(11):1325-1329

Is CCDC84/CENATAC a (novel) component of minor spliceosome?

Does loss of CCDC84/CENATAC cause a splicing defect?

YES

de Wolf, B., et al. (2020). "Chromosomal instability by mutations in a novel specificity factor of the minor spliceosome." BioRxiv. DOI:2020.2008.2006.239418.

<u>RNAseq analysis</u>: CCDC84/CENATAC is a novel specificity factor

Affects equally AT-AC and GT-AG introns

CENATAC depletion

Specificity for AT-AC introns → separate regulation via CENATAC?

de Wolf, B., et al. (2020). "Chromosomal instability by mutations in a novel specificity factor of the minor spliceosome." BioRxiv. DOI:2020.2008.2006.239418.

GO:0004707: MAP kinase activity GO:1990234: transferase complex GO:0016570: histone modification GO:0006611: protein export from nucleus GO:0140142: nucleocytoplasmic carrier activity GO:0043254: regulation of protein complex assembly GO:0016482: cytosolic transport GO:0072659: protein localization to plasma membrane GO:0016073: snRNA metabolic process GO:0090150: establishment of protein localization to membrane ko05223: Non-small cell lung cancer GO:0042393: histone binding GO:0005765: lysosomal membrane GO:0010638: positive regulation of organelle organization GO:0048024: regulation of mRNA splicing, via spliceosome R-HSA-1640170: Cell Cycle GO:0005819: spindle GO:0004843: thiol-dependent ubiquitin-specific protease activity

GO:0043021: ribonucleoprotein complex binding ko04261: Adrenergic signaling in cardiomyocytes

Summary of CCDC84/CENATAC present data

CENATAC = CENtrosomal AT-AC splicing factor

First splicing factor that differentiates between AT-AC and GT-AG introns

→ Separate regulation?

→ Subnetworks: genes related to cell cycle regulation?

Post-translational modifications

 \rightarrow Regulation?

Aims of the R'Life application

Existing resources

Deep RNAseq dataset: - CENATAC depletion time course

- MVA patient lymphocytes
- Additional minor spliceosome diseases

Edited cell line for Auxin-mediated depletion

Integrate exisiting CENATAC data with

Proteome analysis (quantitative mass spectrometry) Interaction partners: protein pulldowns and **BioID analysis:**

To address

Molecular basis of CENATAC-associated MVA

Mechanism of AT-AC intron selectivity

- Upstream regulation
- Separate regulation for AT-AC and GT-AG introns

The big question

Connection between minor spliceosome and cell cycle regulation

Preliminary CENATAC BioID interactome analysis

No hits in the intron recognition complex!

Catalytic complexes light up heavily

- → Unexpected role of for splice site selection/specificity
- \rightarrow Proofreading?

Additional proteins: - Post-translational modifiers → Upstream regulators? - Centrosomal proteins → Is CENTAC a dual-function protein?

Splicing defect – MVA phenotype data integration

Candidate genes for MVA phenotype

- Kinetochore components
- Cohesion complex
- Centrosomal proteins

Global analysis

<u>RNAseq:</u>

→ high level of AT-AC intron retention
→ nonfunctional mRNAs

Proteome:

- \rightarrow impact on protein levels?
 - → secondary/downstream effects

FRILANDER LAB

Mikko Frilander, Institute of Biotechnology, University of Helsinki, Finland

Ali Oghabian

Maureen Akinyi

Michael Algie

KOPS LAB

Geert Kops, Oncode & Hubrecht Institute and University of Utrecht, Netherlands

Bas de Wolf

SNEL LAB

Berend Snel, University of Utrecht, Netherlands

Laura van Rooijen

Biocenter Finland nodes at BI

- DNA sequencing and genomics unit
- Proteomics unit
- Light microscopy unit

JANE AND AATOS ERKKO FOUNDATION