Tutkijat valjastivat nanopartikkelit äärimmäisen pieneksi laseriksi

3.1.2017

Aalto-yliopiston tutkijat kehittivät maailman ensimmäisen näkyvän valon aallonpituuksilla toimivan ja niin sanottuja pimeitä hilamoodeja hyödyntävän plasmonisen nanolaserin. Tutkimus on tehty akatemiaprofessori Päivi Törmän johdolla.

Tutkijoiden kehittämä uudentyyppinen laser on erittäin pieni, noin tuhannesosa ihmisen hiuksen paksuudesta. Valon elinaika näin pienissä rakenteissa on äärimmäisen lyhyt, vain kymmeniä tai satoja kertoja suurempi kuin valon omaan värähtelyyn tarvittava aika. Tutkimustulos avaa mahdollisuuden kehittää uusia integroituja koherentteja valonlähteitä kuten lasereita, jotka ovat erittäin nopeita ja pieniä.

Laserin toiminta perustuu hopeasta tehtyihin nanopartikkelihiloihin. Toisin kuin perinteisissä lasereissa, joissa takaisinkytkentä tapahtuu normaalien peilien avulla, uusi nanolaser hyödyntää sadan nanometrin kokoisten nanopartikkelien säteilemää valoa. Kukin nanopartikkeli toimii kuin pieni antenni, joka säteilee valoa toisiin partikkeleihin. Maksimoidakseen laserin intensiteetin tutkijat asettivat partikkelit laservalon aallonpituuden etäisyydelle toisistaan. Tällöin kaikki partikkelit säteilevät samassa vaiheessa ja siten voimistavat laservaloa. Laserin vahvistavana elementtinä käytettiin orgaanisia fluoresoivia molekyylejä.

Eräs keskeisimmistä haasteista nanolaserin kehittämisessä oli valon lyhyt elinaika tällaisissa nanorakenteissa. Tutkijat kiersivät ongelman hyödyntämällä niin kutsuttuja pimeitä moodeja.

"Pimeät moodit voidaan intuitiivisesti ymmärtää perinteisten antennien avulla: yksittäinen antenni säteilee voimakkaasti, mutta kaksi antennia, jotka ovat hyvin lähellä toisiaan ja joihin syötetään vastakkaisvaiheista virtaa, säteilevät hyvin vähän", selittää Päivi Törmä. "Pimeä moodi aiheuttaa vastakkaisvaiheisia virtoja jokaiseen nanopartikkeliin, mutta paljon suuremmilla taajuuksilla, jotka vastaavat näkyvää valoa", hän jatkaa.

"Pimeät moodit ovat kiinnostavia niiden sovellusten kannalta, joissa pieni tehonkulutus on tärkeää. Sellaisenaan pimeän moodin laserointi on hyödytöntä, sillä pimeän moodin laservalo on sidottu nanopartikkelihilan pintaan eikä pääse pakenemaan", lisää tutkija Tommi Hakala. "Hyödyntämällä nanopartikkelihilan äärellistä kokoa löysimme tavan ohjata valo ulos. Hilan reunoja kohti mentäessä partikkelit alkavat käyttäytyä yhä enemmän kuin tavalliset antennit, jotka säteilevät laservaloa ulkomaailmaan", kertoo jatko-opiskelija Heikki Rekola.

Tutkimusryhmä käytti laserin valmistamiseen kansallisen OtaNano-tutkimusinfrastruktuurin puhdastiloja ja nanovalmistuslaitteita.

Tulokset julkaistiin Nature Communications -julkaisussa:  T.K. Hakala, H.T. Rekola, A.I. Väkeväinen, J.-P. Martikainen, M. Nečada, A.J. Moilanen, P. Törmä. Lasing in dark and bright modes of a finite-sized plasmonic lattice. DOI:10.1038/NCOMMS13687

Video https://www.youtube.com/watch?v=jXuAk17ycJA

 

Lisätietoja:

Quantum Dynamics -tutkimusryhmä (physics.aalto.fi)

Suomen Akatemian Laskennallisen nanotieteen huippuyksikkö COMP (comp.aalto.fi)

Micronova (micronova.fi)

Lähde: Aalto-yliopiston tiedote

Viimeksi muokattu 4.1.2017
Seuraa meitä:
FacebookSlideshareTwitterYoutube
VAIHDE 029 533 5000
KIRJAAMO 029 533 5049
FAKSI 029 533 5299
   
SÄHKÖPOSTI etunimi.sukunimi@aka.fi
AUKIOLO Arkisin 8.00-16.15
   
HENKILÖHAKU »
YHTEYSTIEDOT, LASKUTUS  JA
REKISTERISELOSTEET»
KYSYMYKSET JA PALAUTE »